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We study a chemical gelation model in two dimensions which includes both monomer aggregations and
bond fluctuations. Our numerical simulation shows that a sol-gel transition occurs when an initial monomer
concentration is above a critical concentration. Fractal aggregates grow until the sol-gel transition occurs. After
the gelation, however, bond fluctuations break the fractal structure and an interesting inhomogeneous gel fiber
network appears instead. A pore size distribution of the inhomogeneous structure shows the existence of
hierarchical structures in the gel phase. It is also found that slow dynamics appear near the critical
concentration.
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I. INTRODUCTION

One of the most important characteristics of chemical gels
is the formation of heterogeneous structure. The structural
inhomogeneities affect their physical properties such as per-
meability, elasticity, and optical properties �1�. Although
many studies have been made �2,3�, its dynamical origin has
not been elucidated. The difficulty is that they are determined
by nonequilibrium dynamics. Since chemical gels are formed
by irreversible aggregations between constituent monomers,
the structures are frozen in the nonequilibrium gelation pro-
cesses.

On the other hand, equilibrium properties of gels have
been investigated with percolation models �4� which gener-
ate equilibrium ensembles. For example, it is well known
that physical gels formed under annealed conditions are de-
scribed by equilibrium systems such as correlated percola-
tion models �5–7�. However, it is not obvious that equilib-
rium systems can describe the quenched randomness
produced by the irreversible aggregations of chemical gels
�8�.

In this paper, we give a chemical gelation model which
includes both monomer irreversible aggregations and bond
fluctuations, and numerically study its gelation dynamics in
two dimensions. The model introduces bond fluctuations in a
similar manner as the bond fluctuation model �BFM� �9�
which has been used to model the Rouse dynamics of poly-
mers, and it can simulate polymers and cross-linked gels in a
unified framework. By the numerical simulations, a dynami-
cal origin of the inhomogeneities of chemical gels is re-
ported. We shall show that bond fluctuations drastically
change the structures of gels. Although the fractal nature is
important in growth kinetics, bond fluctuations break it and
lead to a novel inhomogeneous gel fiber network structure.

The paper is organized as follows. Section II describes the
model and the procedure of numerical simulations. In Sec.
III we present our numerical results and discuss the gelation
dynamics. We show that a critical concentration of gelation
exists due to competition between fractal aggregations and
bond fluctuations. The inhomogeneous gel networks are in-
vestigated in detail and hierarchical structures of the net-
works are found. We also report that the cluster size distri-
butions below the critical concentration broaden and have a

tail with large clusters near the critical concentration. Finally,
concluding remarks are given in Sec. IV.

II. MODEL

Let us consider N monomers on the L�L square lattice
with the periodic boundary condition. Each monomer is rep-
resented by a plaquette shown in Fig. 1 and it can jump by
one unit lattice. The monomer concentration is given by

� =
4N

L2 . �1�

The elementary process of aggregation in our model is the
formation of a bond between monomers. The bond is created
when distance la between two monomers satisfies

2 � la � 3 �namely la = 2, �5, 3� �2�

and they both have less than f bonds. �f is the functionality
of the monomer.� The lower bound of la is determined so as
to avoid an overlap between monomers, and the upper bound
is the maximal value which guarantees that the bonds never
cut through each other during the course of the simulation.
As an additional restriction, we forbid the formation of a
triangle bond where three monomers bond with each other
since it leads to an artificial triangle-based ladder structure
which prohibits isotropic growth. A bond length lb can
change as long as it satisfies

2

1

FIG. 1. A monomer on the square lattice.
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2 � lb � �10, �3�

but a bond itself cannot be broken once it is created. The
value lb is determined in a similar manner as la. The variable
bond lengths allow movement of clusters. We illustrate an
aggregation process of two clusters in Fig. 2.

We follow the iterative procedure: At t=0, we randomly
put N monomers on the lattice avoiding overlaps. Then for
any pair of monomers we create a bond if the distance be-
tween them is one of la’s in Eq. �2�. Next we randomly
choose a monomer and move it to a randomly chosen direc-
tion by one unit lattice if the monomer does not overlap with
others and if the movement is compatible with the bond
length restriction �3�. If these conditions are not satisfied, we
proceed with the next iteration without a movement. After
the movement, we create new bonds if the conditions above
are met, and proceed with the next iteration. N iterations
correspond to a unit physical time �t=1. As iterations go,
monomers form clusters, and when one of the clusters is
bound to itself via the periodic boundary condition, we re-
gard that a gel forms and a sol-gel transition occurs.

The algorithm here is a generalization of BFM so as to
include aggregation processes. Indeed, our model reduces to
BFM if we take f =2, although the bond fluctuation region lb
is smaller than that of the original BFM because creation of
bonds with length la bring an additional means of bond

crossing. In this paper, we take f =4 corresponding to the
functionality of a typical crosslinker of cross-linked polymer
gels, N ,N-methylenebis. As well as BFM, each bond in our
model effectively represents a group of consecutive C-C
bonds along the backbone of the chemically realistic chain.
In the same way, each monomer is a coarse-grained mono-
mer which consists of a crosslinker and polymers attached to
it.

Simulations are performed for concentrations �
=0.1–0.3 with the system size L=200 unless stated other-
wise.

III. RESULTS

A. Existence of a critical concentration

Our simulations show a critical concentration �g below
which no sol-gel transition occurs. Typical snapshots are
shown in Fig. 3. In Fig. 3�a� the monomer concentration is
�=0.1���g� and in Fig. 3�b� �=0.3���g�. For ���g, the
system does not show a sol-gel transition even after very
long iterations �t�10 000�, and we obtain a large number of
small globular clusters after all. On the other hand, the sys-
tem with ���g shows a sol-gel transition �Fig. 3�b��. The
largest cluster in the system becomes self-connected via the
periodic boundary condition and a gel forms in this case.

To determine �g we plot the gelation time tg as a function
of � in Fig. 4. We find that tg increases as � decreases and it
becomes infinity at �g�0.22 as

tg � �� − �g�−�, �4�

where the power index is ��1.6. Below �g, no sol-gel tran-
sition takes place. The existence of the critical concentration
is consistent with experimental results for cross-linked poly-
mer gels.

For ���g, the fractal dimension df of clusters before
gelation is less than the dimension of the system d. To show
this, we plot in Fig. 5 the radii R of the largest clusters in the
system at various t’s before gelation as a function of their

FIG. 2. An aggregation process of two clusters. Gray plaquettes
represent monomers and thick lines represent bonds between them.
Arrows show randomly chosen directions in which monomers move
within �t=1. In the final figure, the bond formation condition is
met. The two clusters are joined together and become one cluster.
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FIG. 3. Snapshots of gelation
processes for �a� �=0.1 and �b�
�=0.3. They are typical examples
for high concentrations and low
concentrations, respectively. Thin
lines represent bonds and black
dots represent monomers in the
largest cluster. For low concentra-
tions, �a�, clusters have globular
structures, and no sol-gel transi-
tion occurs even after t=1000. For
high concentrations, �b�, a fractal
cluster forms a gel �t=10�. After
the gelation, however, the intrac-
luster bond formation proceeds
and the gel becomes inhomoge-
neous �t=1000�.
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mass m. Here m is defined by the number of monomers in
the cluster and R is defined by

R2 =
1

2m2�
i,j

m

�ri − r j�2, �5�

where ri is the position vector of the ith monomer in
the cluster. For the initial monomer concentration
�=0.25���g�, we find a power law behavior

m � Rdf , �6�

where df=1.79±0.06. The fractal dimension df is almost the
same as the corresponding result of the diffusion limited
cluster-cluster aggregation �DLCA� model in two dimen-
sions, df

DLCA=1.75±0.07 at the same concentration �10–12�.
On the other hand, for ���g, the fractal dimension df is
almost the same as the dimension of the system. In this case,

formation of intracluster bonds, namely bond formation be-
tween monomers in the same cluster, proceeds before gela-
tion and it makes clusters globular as is seen in Fig. 3�a� at
t=1000.

The difference of the fractal dimensions naturally explain
the existence of the critical concentrations �g as follows.
When the average mass and radius of clusters are 	m
 and
	R
, respectively, the volume occupied by the clusters Vo is
given by

Vo � � N

	m

�	R
d � N	R
d−df . �7�

�Here we have used the relation 	m
�	R
df.� If Vo becomes
comparable with the volume of the system

Vo � Ld, �8�

the clusters begin to overlap and a so-gel transition occurs by
a process similar to the percolation �13�. For ���g, the
condition of overlapping �8� is always fulfilled when 	R

becomes large enough because the inequality df�d holds.
On the contrary, for ���g, the condition �8� is not satisfied.
Because of the equation d�df, Vo rarely depends on 	R
 and
never exceeds the volume of the system. Thus no sol-gel
transition occurs in this case.

B. An inhomogeneous structure

The most remarkable feature of our model is the final
structure of gels, see Fig. 3�b�. As shown in Fig. 5, gels have
a fractal structure similar to the DLCA model until gel for-
mation. Indeed, a snapshot at t=10 in Fig. 3�b� also shows
the fractal structure. However, the fractal structure does not
remain after the gel formation. Structure of gels drastically
changes at t=1000 in Fig. 3�b�. This is due to formation of
intracluster bonds after the gel formation. The formation of
intracluster bonds breaks the fractal structure and makes an
interesting inhomogeneous gel fiber network structure in-
stead.

In order to investigate the structural changes after the ge-
lation quantitatively, we compare pore size distributions in
the gel state at two different times t= tg and t	 tg. The pore
size is defined as the number of sites in the lattice surrounded
by bonding monomers. The precise definition is given as
follows. At first, black dots are put on all sites in the lattice,
and then the dots covered by monomers are changed to
white. Furthermore, we define that the bond width is one unit
length of the lattice, and the dots covered by the bonds are
also changed to white ones. As a result, we obtain clusters of
black dots such as Fig. 6. We define a cluster of black dots as
a pore, and the number of black dots in the cluster as the pore
size sp.

Figure 7 shows the pore size distributions for
�=0.3���g� in two system sizes L=200 and 400 at two
different times: �a� gelation time t=10�=tg� and �b� t=1000.
We can neglect the part in which the data become flat in
large sp because the flat part depends on system size L. At
t= tg the distribution shows two kinds of power law decay
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FIG. 4. Gelation time tg for various concentrations. The dashed
line represents the best fitted curve for data. The gelation time
shows a divergence at the critical concentration �g�0.22.
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FIG. 5. Radius R of the largest clusters vs their mass m at
various times before the sol-gel transition. Here �=0.25���g�. The
fractal dimension of the clusters is df=1.79±0.06.
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with different exponents. For small sp, the distribution be-
haves as P�sp��sp

−
 with 
=1.444±0.027, and for large sp


=1.982±0.030. The former value of 
 depends on the
monomer concentration �, but the latter 
 does not. Since the
latter value is near the Fisher exponent of percolations in two
dimensions, 
F=187/91�2.055 �4�, our model belongs to
the same universal class in large scales. The distribution is
scale invariant and no inhomogeneity is observed. On the

other hand, the distribution at t=1000 shows a hierarchical
structure separated at sp�spc, see Fig. 7�b�. For sp�spc, the
distribution shows an exponential decay, and for sp�spc, it
can be fitted by the dashed line given by P�sp��sp

−� exp�
−sp /sp

*� with �=0.581±0.016 and sp
*=427.94±37.08. The

former comes from small pores in monomer dense regions in
Fig. 3�b� at t=1000, and the latter from voids in the gel
networks. The scale sp

* indicates the characteristic size of the
voids. The inhomogeneous structure of the gel networks are
characterized by two length scales �pc and �p

* corresponding
to spc and sp

*, respectively �Fig. 8�. In comparison with the
distribution at t= tg, the distribution at t	 tg contrasts the
monomer dense regions with the monomer sparse ones. This
phenomenon is similar to spinodal decomposition.

We also confirm the existence of spc and sp
* in the thermo-

dynamic limit, L→. In Fig. 9, we plot their dependence on
the system size L ��=0.3, t=1000�. It shows that

spc � 11.678 for L � 150,

sp
* � 445.678 for L � 280. �9�

Therefore these two scales do not disappear in the thermo-
dynamic limit.

(a) (b)

FIG. 6. �a� A schematic representation of a pore. Light and deep
gray plaquettes represent monomers and bonds, respectively. Black
dots are put on the sites uncovered by the monomers and the bonds.
We define a pore as a cluster which consists of the black dots. �b�
Shows one of the pores. Thin lines represent bonds and the dots are
the same as that described above. The size of the pore is defined by
the number of the dots.
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FIG. 7. Pore size distributions P�sp� for �=0.3. �a� At the gela-
tion time, the distribution shows power law decay P�sp��sp

−
 with

=1.444±0.027 for small sp and with 
=1.982±0.030 for large sp.
�b� At t=1000, however, the distribution decays exponentially. The
crossover size spc separates the distribution into monomer-rich and
monomer-poor regions.

FIG. 8. Two characteristic size scales �pc and �p
*.
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for large L.
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C. Cluster size distribution near the critical concentration

Now we discuss properties near the critical concentration.
Figure 10�a� shows the cluster-size distribution near the criti-
cal concentration ��=0.2� at t=1000. For comparison, we
also plot the distribution at �=0.1 in Fig. 10�b�. The data
have been taken from 100 samples. We can see that when the
concentration � is low ��=0.1�, the distribution is not broad,
but near the critical concentration ��=0.2�, it becomes
broader and has a tail toward a large value of m. This broad-
ening distribution can be understood as a result of overlap-
ping of clusters near the critical concentration. Namely if the
overlapping occurs near the critical concentration, the distri-
bution of clusters are affected by processes similar to perco-
lations which interpolate the overlapping clusters. In general,
the percolation processes generally give a distribution with a
tail toward a large value of m �4�. This broadening behavior
can be interpreted as slow dynamics near the gel critical
point.

IV. SUMMARY AND DISCUSSION

We examine a chemical gelation model including aggre-
gations of clusters and bond flexibility in two dimensions.
The model shows a critical concentration �g below which no
sol-gel transition takes place. Above the critical concentra-
tion, aggregations before gelation show a fractal structure,
but after the sol-gel transition, a different inhomogeneous gel
fiber network structure emerges due to bond fluctuations.
From the pore size distributions which characterize the inho-
mogeneous structure, we find that the structure can be di-
vided into two hierarchical structures: a monomer-rich re-
gion �r��pc�, and a monomer-poor region �r��p

*�. This
inhomogeneous structure is important to figure out properties
of the cross-linked gels. Experimentally, the inhomogeneous
structure can be detected as a speckle pattern in the light
scattering experiment �14–16� and a cooperative diffusion of
the hierarchical structure can be observed as the so-called gel

mode �17�. As is suggested by recent experiments �16�, if the
speckle pattern is caused by large voids in gel networks, the
scale of speckle inhomogeneity is given by �p

*. At the same
time, to observe the speckle pattern in the light scattering
experiment, the speckle inhomogeneity should be larger than
the laser wavelength � �18�, so �p

* should be larger than a
typical laser wavelength 630 nm. From Eq. �9�, this gives a
lower bound of the size of the coarse-grained monomer,
which is estimated to be about 50 nm. In addition, our simu-
lation predicts that no speckle pattern is observed just after
the gelation and bond fluctuation is essential to the speckle
pattern. We also find that our model realizes the slow dynam-
ics near the critical concentration ���g.

Even though our model shows fractal aggregates similar
to the DLCA model, its gel is very different from that of the
DLCA model. While our model shows no sol-gel transition
below the critical concentration, the DLCA model shows a
sol-gel transition for any nonzero initial concentrations �13�.
Moreover, our model predicts an inhomogeneous gel net-
work structure, but the DLCA model predicts a fractal struc-
ture even after the gelation. Although the gel phase of cross-
linked polymers is characterized by the existence of the so-
called gel mode �17�, the DLCA model cannot explain such a
specific scale because of its scale invariant nature due to the
fractal structure. These differences result from the lack of
bond fluctuation in the DLCA model. The DLCA model de-
scribes colloidal gels rather than cross-linked polymer gels.
For example, the growth by the DLCA in three dimensions is
predicted to result in a power-law increase in cluster radius
with time, 	R
� t1/df, where 	R
 is the average cluster radius
and df is the fractal dimension. This scaling behavior is ob-
served excellently by recent experiments of colloidal gels in
the International Space Station �19�.

In our model the dynamics of monomers connected by
bonds are Brownian motions with bond restrictions, and the
Brownian force acts on all monomers equivalently regardless
of the sizes of clusters to which they belong. On the other
hand, if one assumes that less Brownian force acts on mono-
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mers in a larger cluster �20,21�, the inhomogeneous structure
cannot be obtained, since intracluster bond formation cannot
proceed in large clusters due to the low mobility of the con-
stituent monomers. Enough Brownian force acting on mono-
mers in large clusters are needed to form the inhomogeneous
structures.

Finally, we would like to point out that the structure of
aggregations depends considerably on the functionality of
monomers: The system with f =2 cannot show a sol-gel tran-
sition. Furthermore, in the case of f =3, the functionality of
monomers becomes easily saturated during gelation pro-
cesses, thus the intracluster bond formation important to the

inhomogeneous structure cannot proceed enough. Therefore
the minimal functionality showing the inhomogeneous struc-
ture is f =4, which is the same as that of a typical cross-
linker N ,N-methylenebis.
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